鸽巢问题教学设计

时间:2022-12-07 13:01:08
鸽巢问题教学设计

鸽巢问题教学设计

作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么什么样的教学设计才是好的呢?以下是小编收集整理的鸽巢问题教学设计,仅供参考,欢迎大家阅读。

鸽巢问题教学设计1

教学内容

审定人教版六年级下册数学《数学广角 鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求 ……此处隐藏9977个字……列式计算

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

5、简单了解鸽巢问题的由来。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

4、育新小学全校共有2192名学生,其中一年级新生有367名同学是20xx年出生的,这个学校一年级学生20xx年出生的同学中,至少有几个人出生在同一天?

(五)全课总结今天你有什么收获呢?

(六)布置作业

作业:两导两练第70页、71页实践应用1、4题。

《鸽巢问题教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式